&
'h-'-"-ﬂ

JAVA
Advanced
Features

Trenton Computer Festival
May 34 & 4th, 2003

Michael P. Redlich
Independent Consultant
http://www.redlich.net/

mike@redlich.net

Table of Contents

TABLE OF CONTENTS ...ttt e bbb
INTRODUGCT ION L.t bbb bbb bbb bbb bbb
APPLETS AND APPLICATIONS ...t bbb b bbb bbb
JAVABEANS ..ot bbb AR R AR R
EXCEPTION HANDLING. ...ttt b bbb bbb bbb
JAVA DATABASE CONNECTIVITY (IDBC) .cciiiieriieereeieiereesessessessssssssssesssasssssssssssssssssssssessessessssssssssssssssssssssssssssessesssssssnssnssnssnees
JAVA 2 COLLECTIONS . ..ottt b bbb bbb bbb

REFERENCES FOR FURTHER READING ... bbb bbb

Introduction

Java offersall of the advantages of object-oriented programming (OOP) by allowing the devel oper to create user-defined data
types for modeling real world situations. However, the real power within Javais contained in its features. Four main topics
will be covered in this document:

Applets and Applications

JavaBeans

Exception handling

Java Database Connectivity API

There will also be an introduction to the Java 2 Collections.

An example Java application was devel oped to demonstrate the content described in this document and the I ntroduction to
Java document. The application encapsul ates sports data such asteam name, wins, losses, etc. The source code can be
obtainedfromhtt p://tcf.redlich. net/.

Applets and Applications

A Java applet requires the use of abrowser, and isinvoked within the <appl et ></ appl et > HTML tag pair. The
bytecode is executed with the VM built-in to the browser. The initial point of execution iswithin amethod calledi ni t () .

A Javaapplication is standalone and is normally executed from the command line using the local VM. Theinitial point of
execution iswithin a static method called mai n() . The method signatureis.

public static void main(String[] args)

{

}
Thisis, of course, similar to the C/C++ programming languages. However, the parameter list for handling command line
arguments can be omitted in C/C++, but the parameter list must be supplied even if there is no intention of using command

line arguments. Also missing from the parameter list is an integer for the number of arguments.

It is possible to write a Java program that can be used as an applet and an application. It must, of course, contain both
i nit() andmai n() methods.

The following diagram describes the process of developing an applet:

Text Editor

Browser Applet Viewer

.Classfile .html file

Text Editor

The methods required for devel oping an applet are shown in the general source code example below:
/1 Java appl et source code
i mport java. appl et. *;

i mport java.awt. Graphics;

public class MyAppl et extends Applet inplenents Runnable

{
public void MyApplet() // construction
{...}
public void init() // initialization
{...}
public void start() // starting
{...}
public void stop() // stopping
{...}
public void destroy() // destroying
{...}
public void paint(Gaphics G // painting
{...}
}
/1 HTML file that invokes appl et
<htm >
<head>
<title>My Applet</title>
</ head>
<body>
<hr >

<appl et code="MAppl et.class" w dt h="500" hei ght ="50">
<param nane="text" val ue="Welcome to ny applet!">
</ appl et >

<hr >

</ body>
</htnl >

JavaBeans

JavaBeans (or just Beans) is amethod (sic) for devel oping reusable Java components that can be used in web applications,
most notably within Java Server Pages (JSPs). Beans easily store and exchange information. In order for a Javaclassto be a
bean, it must be developed according to the JavaBean specification:

implementsthe Ser i al i zabl e interface

contains a default constructor (for JSP pages)
contains getter/setter methods for all the class members

The bean must implement the Ser i al i zabl e interface so that the bean's current state can be written to disk and recreated
between web server restarts.

A default constructor is required when the bean will be used within a JSP page.

The getter and setter methods establish (set) and return (get) the current values of al the class members. These methods must
follow a standard naming convention that is relative to each of the class members. Thefirst letter of each class member isin
lower case. The corresponding getter and setter methods start with the terms, get and set , and are completed with the
member name containing an upper casefirst letter. Theterm, i s, may be used for a getter method that returns a boolean
value. For example:

public class SportsBean inplenments Serializable

{
private int wn;
private bool ean enpty;

public Sport ()

{}
public int getWn()
{
return win;
}
public void setWn(int wn)
{
this.win = w n;
}
publ i c bool ean i sEmpty()
{
return enpty;
}
public void setEnpty(bool ean enpty)
{
this.enpty = enpty,;
}

}

In this example, the getter and setter methods for the class member,wi n, isget W n() andset W n() respectively.

4 Exception Handling

Detecting and handling errors within an application has traditionally been implemented using return codes. For example, a
function may return zero on success and non-zero on failure. Thisis, of course, how most of the standard C library functions
are defined. However, detecting and handling errors this way can become cumbersome and tedious especially in larger
applications. The application's program logic can be obscured as well.

The exception handling mechanism in Javais a more robust method for handling errors than fastidiously checking for error
codes. Itisaconvenient means for returning from deeply nested function calls when an exception is encountered. Unlike
C++, exception handling was built-in to the Java programming language from the very beginning. Exception handling is
implemented with the keywordst r y,t hr ow, andcat ch. Anexceptionisraised with athrow-expression at apoint inthe
code where an error may occur. The throw-expression has the form:

throw T;

where T can be any data type for which there is an exception handler defined for that type. A try-block isa section of code
containing a throw-expression or a function containing athrow-expression. A catch clause defined immediately after the try-
block, handles exceptions. More than one catch clause can be defined. For example:

public class ExceptionTest

{
public static void main(String[] args)
{
try
initialize();
}
cat ch(Excepti on excepti on)
{
exception. printStackTrace();
}
public void initialize() throws Exception
{
/1 contains code that may throw an Exception
/1l type as specified
}
}

The Javalibrary contains an extremely exhaustive list of defined exceptionsfor all types of errors. Most exceptions are
checked, i.e., the compiler enforces exception handling. If a certain method call is made without it being placed in atry
block, the compiler will flag this as an error. The compiler does not enforce unchecked exceptions.

Exceptions should be thrown for things that are truly exceptional. They should not be thrown to indicate special return
values.

Java Database Connectivity (JDBC)

The Java Database Connectivity (JDBC) API alows the developer to easily connect to, read, and manipulate popular
databases (Microsoft Access and SQL Server, Oracle, etc.), spreadsheets, and flat files for usein applications. The JDK
suppliesabuilt-in driver for these databases that isused in conjunction with an Open Database Connectivity (ODBC)
connection to a particular database. Other, more complex drivers (ones that don't require an ODBC connection, for example)
must be obtained from a vendor, and referenced within the application. With only afew lines of code, aconnectionto a
database can be made, a query can be executed, and aresult set can be displayed:

public class DBTest
{
static public void main(String[] args)
{
String sql = "SELECT * FROM t bl Ti neZones;

try
{

Cl ass. forNane("sun. jdbc. odbc. JdbcCdbcDri ver");
Connection connection =

Dri ver Manager . get Connecti on("j dbc: odbc: ti mezones","","");
St at ement statenent = connection.createStatenent();
Resul t Set result = statenent.executeQuery(sql);
whi | e(result.next())

System out. println(result.getDouble(1l)

+ " " + result.getDouble(2));

connection. cl ose();

}
cat ch(SQLExcepti on excepti on)

{}
}
}

The driver for most databases using an ODBC connection can be accessed viathe built-inJdbcOdbcDr i ver thatis
included in the Java Development Kit.

The exampl e above assumes that a database exists with an ODBC connection namedt i nezones, which isreferenced in the
statement:

Connection connection = DriverManager. get Connecti on("j dbc: odbc: ti mezones","","");

and returns an instance of type Connect i on. The empty stringsin the second and third parameters of the
get Connect i on() method are used for passing the userlD and password of the database if they exist. The
connect i on object isthen used to return an instance of type St at enent asin the statement:

St at enent statenment = connection.createStatenment();

The St at enent object is used to ultimately obtain the desired result set based on agiven query. Inthe example above, the
query," SELECT * FROM t bl Ti neZones" isestablished as astring, and can be passed into the St at emrent object's
execut eQuery() method. A Resul t Set object isreturned upon a successful execution of the query. Examining all the
rows of the result set is handled through a simple while loop:

whil e(result.next())
Systemout.println(result.getDouble(l) + " " + result.getDouble(2));

The ResultSet object'snext () method returns a boolean to indicate if another row of dataisavailable. Thetwo callsto the
get Doubl e() method assumes that values of type doubl e are returned in columns 1 and 2 of the result set. Getter
methods for all the built-in data types have been defined inResul t Set . Other examplesincludeget | nt () and

get String() . Thecolumns of theresult set are one-based (as opposed to zero-based), that is the value of first columnin
each row isretrieved by get Doubl e(1) (orget String(1) orgetlnt(1)),andsoon.

The only drawback to the above example is that the data types for the columns of the result set must be known in advance. If
the schema of the database is changed, the above code can break. Other options are available, such as calling stored
procedures and obtaining the result sets meta data.

Java 2 Collections

{this section isunder construction...}

References for Further Reading

Thereferences listed below are only a small sampling of resources where further information on Java can be obtained:

Thinking in Java (book)

Bruce Eckel

ISBN

http://ww. bruceeckel . com

Java Developer's Journal (monthly periodical)
http://ww. j avadevel opersjournal . com

Core Java 2, Volume | - Fundamentals (book)

Cay S. Horstmann and Gary Cornell

ISBN 0-13-081933-6

http://ww. sun. com books/ cat al og/ hor st mann6/

Core Java 2, Volume Il - Advanced Features (book)

Cay S. Horstmann and Gary Cornell

ISBN 0-13-081934-4

http://ww. sun. conf books/ cat al og/ hor st mann7/

The Java Tutorial for the Real World (book)
Yakov Fain

ISBN 0-9718439-0-2

http://ww. smart dat apr ocessi ng. com

